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Optimal Peremptory Challenges in Trials by Juriles:
A Bilateral Sequential Process
by Arthur Roth, Joseph B. Kadane and Morris DeGroot
Carnegie-Mellon University
The application of social scientific methods of polling to
the choice of which potential Jjurors to challenge peremptorilly
has raised fears for the future of the jury system, as we now
know it. Some of the cases in which these methods have been used
include the Harrisburg Seven trial (Schulman et al. [8]) ,the
Camden, New Jersey draft board raid trial, the Mitchell-Stans con-
spiracy trial (Arnold [1], Zeisel [10], and Zeisel and Diamond [11]),
the Gainesville, Florida Veterans trial, the Wounded Knee, South
Dakota trials of militant Indians and the Cedar Raplds murder
trial arising from the Wounded Knee disturbance, the Buffalo Creek
West Virginia dam disaster civil damage suit, the Ellsburg-Russo
trial, the Joan Little murder trial, and the Attica trials (Shapley
[9]). All of these trials involve highly publicized cases of de-
fendants who have taken political positions likely to be very
popular with some and very unpopular with others. Furthermore, the
nature of the evidence in at least some of these trials was such as
to confirm the prejudices of the jurors; especially in conspiracy

trials, one man's conspiracy may be another man's business as usual.

To date the sophisticated methods have been used more extensively

by the defense than by the prosecution (Kairys [7] and Ginger [6]).
And it can be argued that this use 1s close to the intent of the

jury system, to protect a defendant unpopular with hils government




T

by having a group more politically diverse than the government
decide his innocence or guillt.

The worry comes in the thought that now that the defense has
blazed the trail, an overzealous prosecution, with the full financial
resources of the government, may follow. If this occurs, one might
conjure up images of "hanging juries" carefully chosen by socio-
logical methods to have the most negative view of the defendant,
and the defense, except in rare instances such as those discussed
above, unable to match the resources of the government. '"District
Attorneys or U.S. Attorneys cannot be expected to stand by doing
nothing while defendants in the most serious cases buy themselves
a significant edge in trial after trial. The champions of the
technique will have to realize that the days when it could be re-
served for their favorite defendants will soon be over" (E+zioni [5]).
Conceivably this could cause a threat to our civil liberties.

To examine whether this possible threat is to be taken seriously,
one should first ask what the defense and prosecution would do with
information of this type if they had it. In this paper we present a
simplified model of the jury selection process and explore some of
its implications. One of our difficulties in undertaking this work
is that, while the law of most states is clear about the number of
challenges allowed to the defense and prosecution in varying circum-
stances, the procedure is typically left to the trial Jjudge. Usually
the judge first examines potential jurors to be sure that they are
qualified, and asks questions which might result in dismissal for
cause, questions that vary depending on the nature of the trial. In
our model each side then has the opportunity to peremptorilly chal-
lenge the next potential Jjuror and, failing that, the Jjuror is then
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sworn in. The question of which side is to challenge first is
left arbitrary in our mathematics, although in our model it cannot
depend on previous uses of the peremptory challenge by elther side.
Furthermore we assume that the prosecution and the defense each
have an opinion about whether the juror under consideration will
vote for conviction, and that these opinions are known to each
other.

This structure leads to a bilateral sequential process, in which
Aecisions are made by each side one-by-one, without a simultaneous
decision by the other side. Bilateral sequential processes may be a
better model for many social phenomena, such as arms races and duopoly
(Cyert and DeGroot [2,3]), than the traditional game theory that re-
quires simultaneous moves by the players.

Both the information available to each side and the particular
sequence we have chosen to study limit the applicability of this
paper, and both assumptions need to be relaxed in further work. None-
theless the particular structure we have chosen, although somewhat
over-simplified, does represent a starting place for examining how

effective soclological methods are likely to be.

l. Statement of the Problem and Main Results

Prosecution and defense lawyers are about to select a jury of
J people. Each prospective juror is (sequentially) interviewed,
and each lawyer must then decide whether to accept or challenge
(1.e., reject) the present candidate before interviewing anyone else,

and this decision cannot later be changed. The prosecution is




allowed at most A challenges while the defense has at most B of
them. After questioning each juror, the two sides have (possibly
different) opinions about the probability that this person will
vote to convict the defendant, giving rise to a vector (pli’pzi)

of the opinions of the prosecution and the defense, respectively.
The jolint c.d.f. F(pl,pg) of the bivariate random variable (Pl,PQ)
throughout the population is assumed known, so that the observed
values (pli’in) represent a sequential random sample from F. It
is also assumed (perhaps unrealistically) that after a Jjuror is
questioned, each side knows both its own and its opponent's opinion,
i.e., the questioning process gives both sides simultaneously a
complete (bivariate) observation from F. Furthermore, the rule
determining at each stage which side must specify first whether it
wishes to use a challenge is assumed fixed at the outset and does
not depend on the previous decisions of the participants.

From the point of view of the prosecution at any stage in the
selection process, the outcome of the entire process will be a
random vector (Pll’P12""’P1J) of the pli-values of the members of
the final jury. (Of course, the components of this vector become
known one at a time as the selection process is carried out.) The
prosecution has a utility function Ul(Pll’Plz""’PlJ)’ and he
will attempt to maximize his expected utility at every stage. We
assume that there 1s no interaction between jurors, so that the
overall (random) probability of conviction in the opinion of the
prosecution is P(l) = # P 1° where the product is taken over the

1
i=1
J people on the final jury. (This assumption is probably valid

only on the first post-trial ballot taken by the jury prior to any
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discussion.) The prosecution's utility function can now be written
as Ul(P(l)). The analysis depends on the particular choice of
this utility function (any increasing function is reasonable),

and we proceed below using Ul(P(l)) = P(l), so that the prose-

1).

cution attempts to maximize EP( For the defense, we similarly

J
define P(g) = P2i and denote the utility function UE' The
i=1

non-interaction assumption implies that the defense will maximize
E[UE(P(Z))] at any stage, and any decreasing function is a reason-
able choice for U,. We use UE(P(C)) = -P(g), so that the defense

attempts to minimize EP(Q)

, the expected value of the overall
probability of conviction in his opinion.

We show that an optimal (in a certain sense) strategy exists.
We define our problem to be reversible (for our particular values
of A, B, and J) if, under the optimal strategy, it will never matter
at any stage which side is required to decide first whether or not

to use a challenge. The problem is universally reversible if it is

reversible for all possible values of A, B, and J. Both of these
concepts depend on the joint c.d.f. F of P1 and P2. At any
stage of the selection process, after some number of candidates have
been acted upon (either mutually accepted or challenged by one side
or the other), it is clear from our choice of utility functions

that the problem is effectively beginning again with "new values"

for A, B, and J. For any integers a < A, b < B, and J £ J, we

say that a,b, and j are reachable if there is positive probability
using the optimal strategy that a,bt, and J are ever these "new
values". It is obvious that reversibility for A,B,J implies re-

versibility for any reachable a,b,j.
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We specify an algorithm that finds the optimal strategy for
both sides as a function of F. We find necessary and sufficient
conditions on F under which the problem is reversible; obviously
it is universally reversible if and only if these conditions hold
for all A,B,J. In particular, universal reversibility 1is shown
to hold whenever both sides always agree on the p-values of pros-
pective jurors. We give examples of F's for which the problem is
not universally reversible. We also show that each side can do at
least as well by making the first decision regarding any Jjuror as

it can by having the opposition decide first.

2. Definition and Properties of the Optimal Procedure

Before investigating reversibility or finding the form of the
optimal procedure, we must define this procedure and describe in
what sense it is optimal. We observe that the jury must be selected
after at most A + B + J people have been interviewed. Thus, the
nunber of decisions in the selection process is bounded. Clearly
the lawyer making the last possible decision (i.e., one juror re-
mains to be selected, and this lawyer has one challenge remaining

while his opponent has none) has an optimal choice. Under the assump-

tion that this last possible cholce will be made optimally, the

consequences of the next-to-last possible decision are known. Hence
it can also be made optimelly. Proceeding by backward induction,
each decision has an optimal cholce if the side making that decision

is willing to assume that both sides will act optimally on all sub-

sequent decisions. The optimal procedure is taken to be the one

resulting from all these optimal choices by both sides; it is optimal

only in the sense of the assumptions Jjust given. Since this procedure




completely defines the actions of both sides, it determines a

pair of values (EP(l),EP(2>), which represents the best the prose-
cution and the defense, respectively, can expect to do under the
assumption that the other side will proceed optimally according

to its own opinions about the prospective jurors.

%. Notation
Let w = (wl’w2""’wA+B+J)
for 1 =1,2,¢.0,A+B+J; Wy = 1 means that the prosecution has to

be a vector such that Wy = 1l or 2

decide first about the ith candidate, while wy =2 means that the

defense must decide first. For any vector y with at least two

~

elements, let @(y) denote the vector which is obtained by deleting
the first element of y. For a < A, b B, j<J, ple[O,l],and p,€[0,1]

suppose the prosecution has a challenges remaining, the defense has b

P112Pp3)
associated with the present candidate is (pl,pg). In this situa-

of them, there are J Jjurors still to be selected, and the (

tion, for J=1 and 2, let P(J') be the product of the pji's
yet to be added to the jury, including the present candidate if he
is accepted. Then we let EP(l') and EP(Q') denote the expected
values of these quantities under the optimal procedure described in

section 2 above. Let v = ( be the vector con-

(EACTEREFAAN)
sisting of the last a + b + j elements of W, 80 that v specifies
who decides first for each remaining potential juror. Then we write
M*(a,b,J,pl,pz,!)==EP(1') and M*(a,b,j,pl,P2,z)==EP(2')to show the
explicit dependence of these quantities on the relevant parameters.

We let u’(a,b,J,z)==EM*(a,b,J,P1,P2,X), where the joint distribution

of (Pl’Pz) over the unit square has the c.d.f. F; uy(a,b,J,v) is de-
fined analogously. Of course, the quantities u*(a,b,J,z) and u*(a,b,J,z)

represent the "values" of the remainder of the process to the two

e . o e Gy e




sides prior to the interviewlng of the candidate. Whenever

a,b,Jj, and v are not ambiguous, we shall conserve space by de-
noting u’ (a) = u*(a-1,b,J,4(v)), u*(B) = u*(a,b-1,3,4(v)), and
u*(y) = n*(a,b,3-1,8(v)); u (a),H (8), and u (v) denote the
obvious analogues involving the u*-function. Also, let Fl and

FQ denote the marginal c.d.f.'s of P1 and P2, respectively, both

of which are easily obtained from the (known) joint c.d.f. F.

Finally, let F(x,y) = 1-F,(x) - Fp(y) + F(x,y) = P(P; >x, Py>y).

4, The Form of the Optimal Strategy When Neither Side is Out of

Challenges (a>1, b>1)
Case 1l: Prosecution Makes the First Decision on the Next Candidate

When the prosecution makes the first decision on the next can-

didate, v, =1, i.e., v 1s of the form v = 1¢(v). By considering

g
the consequences of the two possible decisions, first for the prose-
cution and then (if the prosecution accepts the juror) for the

defense, we can write (for a>1, b>1, j>1)

(}4'1) M*(a,b,j,pl,p2,1¢(y‘)) % max(u*(a),P];u (Y)) s pQu*(Y)<U*(B) ’
ma'x(u (G),u (B)) 3 1 b pQH*(Y)/\“*(B)

It is obvious from the definitions that y*(a) < u*(ﬁ)- Thus (4.1)

can be rewritten (for a>1, b>1, j>1) as

[1%(@) 12 py<u* (@)™ (v) and pycu (8)/u,(+)

(14.2) M*(a,b,J,pl,p2,1¢(z)) =< Plu*(Y) if p1>H*(a)/U*(Y) and p2<u*(5>/l-1~(\/)

w*(B) 1f po>u, (8)/u,(v).

\
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Note that the optimal decisions for both sides regarding the present
juror can be deduced from (4.2); they are summarized in table (4.5)
below. Using (4.2), we define p; to be "large" if plj>u*(a)/u’(y)
and "small" if p1<<u*(a)/u*(y); similarly, p, 1is "large" if

P, >u,(B)/u*(Y) and "small" if p2<<u*(a)/u*(Y). (These definitions
depend on a,b,Jj, and !.) If the marginal distributions of Pl and

P are both continuous, then Py and p, are each either large or

2
small with probability one and table (4.5) completely describes the
form of the optimal decisions. (Note that this can occur even 1if
(Pl,Pe) does not have a Jjointly continuous distribution.) For present
purposes, we assume the marginal distributions are continuous, so

that the case py = w¥(a)/u*(y) or P, = u*(s)/u*(Y), which is
treated in section 6 below, need not be considered here.

From table (4.5) below and by considering the proceedings from
the standpoint of the defense, it can be easily seen that (for a>1,
b>X, 4>1)
uelf) 42 p, is large

(4.3) M,(a,b,J,pl,p2,1¢(z))==ﬁu*(a) if p; 1s small and p, is small

pgu*(y) if p; is large and p, is small.
\

Case II: Defense Makes the First Decision on the Next Candidate

When the defense decides first on the next candidate, vy = 2,
i.e., v 1s of the form v = 2¢g(v). By almost identical arguments

to those used in Case I above, we can write (for a»l, b1, J‘_>_1)

st A g
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min(u,(B),pym,(Y)) if p; is large

(b.4) M,(a,b,J,py,P,,28(¥)) = J
177 min(u, (8),u, (a)) if p; is small

M, (8) if p; is large and p, is large

=$ P ly) 4f p; is large and p, is small

e ba] il Py is small

since it follows from the definitions that u (a) < u*(ﬁ)- The op-

EVA

timal strategies now follow from (4.4), and we summarize these

strategies for both Case I and Case II:

FIRST DECISION FINAL DECISION

(Opponent may challenge if you accept) (Opponent has already accepted)

P, £ small large Py 3 small large

defense: A defense: A defense: A" defense: C
small small

prosecution: C|prosecution: A prosecution: C|prosecution: C

defense: A defense: C defense: A defense: C
large large

prosecution: A|prosecution: A prosecution: A|prosecution: A

A =accept, C =challenge, * =hypothetical case (opponent has already
challenged)

lote that both sides' strategy does not depend on whether they are

making the first or final decision except when _Dy_is small and p,

is large (i.e., both sides find the same Juror undesirable). In that
case, whoever decides first will accept the Jjuror, forcing his op-
ponent to be the one to use up a challenge. Table (4.5) gives the
complete form of the optimal strategy when a2l and b>1l. It does

not, however, tell us exactly what this strategy is because the
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concepts "large" and "small" depend on a,b,j and v through the
functions u* and 1 (with various sets of arguments), which we
do not yet know how to evaluate (see section 7 below).

Tt follows from (4.5) that (for a>1, b>1, j>1)
() if p; is large and p, is large

(4.6) M*(a,b,j,pl,p2,2¢(!)) = plu*(v) if p; is large and p, is small

u*(a) AT p; is small.

5. The Desirability of Going First Plus a Characterization of

Reversibility

From (4.2) and (4.6), we see that (for a>1, b>1, j>1)

¥ . * s
(5.1) M'(a,b,3,py,P,,18(v)) - M (a,b,],p1,P5,28(v)) =

X

u (a)-—u*(a)zc)if Py small, P, large
0] otherwise.
Similarly, from (4.3) and (4. 4), for a>l, b31, J>1,
(5.2) M,(8,5,3,P1,P5,18(v)) - M,(2,b,3,0,0,,20(¥)) =
He(B) =py(a) >0 if Py small, p, large

0 otherwise.

We see from (5.1) and (5.2) that both sides are at least as well off

going first for the next juror as they are going second; there is no

difference (in fact, we have seen from (4.5) that the strategies are
independent of order) unless P is small and Py is large. This
argument can be extended by induction to other elements of the "order"
vector v. Since reversibility is trivial if either a=0 or b=0
(i.e., only one side has any choices remaining), (5.1) and (5.2)

suggest

Theorem 1: The optimal strategy is reversible if and only if for

any reachable a,b,j,v either (1) The probability is zero that Py

~ e —- .
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is small and p, is large, or (ii) The probability is zero that
Py and p, are either both small or both large not only for the
present values of a,b,Jj,v but also for any a,b,j,v that are

reachable from these present values.

Proof: The theorem would follow immediately from (5.1) and (5.2) if

we could show that condition (ii) is equivalent to

(£1*) W (a) =p*(8) and u,(a) = u.(B).

But (ii') means that either side could give the other side one of its
challenges without loss of utility. Since the u* and u*-functions
represent expectations over the entire future of the selection process,
(1i') is equivalent to the condition that (wilth probability one) it is
not presently and will never in the future be the case that one side
wants to challenge a candidate that the other side wants to accept.

But this is precisely condition (ii). Qe BeDe

Theorem 1, unfortunately, is a characterization of reversibility that
is as hard to verify as the original condition itself; hence the
theorem has little practical use. In all the usual cases (where the
defense and the prosecution have essentially opposite goals) it is
clear that u*(a)<u (B) for all a,b,j,v, and condition (ii) fails.
If condition (ii) is ignored, then reversibility is equivalent to the
property that P (both sides find the same juror unacceptable) = O.

A very 1mportant special case of Theorem 1 is given by

Theorem 2: Suppose P2==kPl for some k>0, i.e., the joint distri-

bution of (pl’Pg) lies entirely on a line through the origin. Then

universal reversibility holds.
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Proof: We can ignore the degenerate case where P1 and P2 are
constants. Hence P2 is a non-degenerate strictly increasing
function of P;, sO that (see above remarks) condition (ii) of
Theorem 1 cannot possibly be met, i.e., u’ (a) < u*(g) for all
a,b,j,v. For any values of the arguments, M((a,b,j,pl,pg,!) = EP(Q')
kJEP<1’) = kJM*(a,b,j,pl,pg,X). Taking expectations with respect

to P, and P,, we obtain u,(a,b,j,v) = kJu‘(a,b,J,z). Assume for

1
any a,b,j,v that p; 1is not large and p, 1is not small. (In

the discrete case, this may be a weaker assumption than Py small,

Ps large.) Then
(i> plgu*(a)/u*(v), l.e., p2 =kp1$ku*(a)/u*(Y), and

(11) Py ue(B)/ux(¥) =kIu* (8) &I (v) =k (8) /™ (¥) > ku* (@) /u*(v)-

The result follows from Theorem 1 and the contradiction given by (i)

and (ii).

Corollary: If both sides always agree on the p-value of any Juror

after questioning, then universal reversibility holds.

Note: Theorem 2 and its corollary have been proved even when Pl or
P2 is marginally discrete. The fact that Theorem 1 also holds in
the discrete case is a direct consequence of Theorem 3 below (which

is proved without making use of Theorem 1).

6. The Case p, =p"(a)/u*(y) or p, = ux(g)/ux(y)

& p, or p, satisfies this condition, then one (or both) of

these p-values is neither "large" nor "small". If one (or both) of

e et s s — IPNUPU——,
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the marginal distributions of P1 and P2 is not continuous,
this may happen with positive probability. When it does happen,
the person whose p-value is neither large nor small will be in-
different between his two possible decisions. In that case, the

decision his opponent would prefer is called the benevolent decision

while the other decision is called the malevolent decision. A

lawyer who always makes the benevolent decision when he is indif-
ferent (whether he is deciding first or whether his opponent has

already accepted the juror) is said to adopt the benevolent strategy;

the malevolent strategy is defined analogously. (Of course, it is

possible for a lawyer to make some benevolent decisions and some

malevolent ones, but we will not consider such "mixed" strategies.)

Theorem 3: If the benevolence or malevolence of one lawyer's strategy

is known to his opponent, the benevolence or malevolence may affect
the opponent's strategy but will not alter the presence or absence of

reversibility or universal reversibility.

Proof: Suppose that the defense is indifferent on a particular de-

cision. If the prosecution is also indifferent, the result is trivial.
Hence assume that this is not the case, i.e., no two of u'(a), u*(8),
and pep*(y) are equal. Then the following table covers all possible

cases and 1s easy to derive:




_——

DEFENSE BENEVOLENT

defense first prosecution first

u (B) <pu (¥) both accept both accept

prosecution accept

w*(g) >u*(a) >p.u*(y) | defense challenge
= defense challenge

prosecution accept

u¥(B) > pau’(y)>u*(a) | defense challenge
= defense challenge

DEFENSE MALEVOLENT

defense first prosecution first

prosecution accept

u*(ﬁ)<<p2u'(Y) defense challenge
defense challenge

defense accept
u*(B)>LJ*(G)>>P2u*(Y) prosecution challenge
prosecution challenge

u*(8) > pou*(Y) >u*(a) |both accept both accept

The action taken regarding this Jjuror is seen to be independent of
order. However, from the second and fifth lines of the above tabdle,
the prosecutlon's strategy is seen to depend on the benevolence or
malevolence of the defense.

A similar analysis when the prosecution is indifferent completes

the proof.

7. An Algorithm for Determining the Optimal Procedure

The form of the optimal procedure (so long as a>1, bZl) was

found in section 4. To completely specify the procedure, it remains
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only to evaluate the functlons u* and W, (in order to quantify
the notions of "large" and "small" values for p; and p,). For

any two real numbers s and t, define the set
(T«1) S{s,t) = {(%,y) 1 x> and y<t).

Then for any bivariate c.d.f. 6(x,y), define the two transformations

T
(7.2) UA(s,t) =ff xda(x,y) [ = ZH‘ x6(x,y)dydx if A has a density 6],
. ; -00

S(s,t) |
N .t
(7.3) V,(s,t) =T yas(ey)[=] [ x8(x,y)dyax if 4 has a density ).
S(s,t) Ao

Our bivariate c.d.f. F(Pl’pg) represents a distribution on the unit
square, and hence the quantities -o and o in (7.2) and (7.3) can

be replaced by O and 1, respectively, when evaluating UF and VF'

Also, UF(s,t) = Vg

Up(s,t) =Ug(0,t) and Vg(s,t) =VL(0,t) 1f s<0; Up(s,t) =Up(s,1)

{8,%) =0 1f elther E>1 or 1<0;

and VF(s,t) =VF(B,1) if t>1. Taking expectations on both sides of
(4.2), (4.3), (4.4), and (4.6), respectively, we now obtain (for
a>1,b>1,3>1) the relationships

") Bl ()
(7.5) u*(a,5,8,20()) =uH@)P (i 2Py 4 () 1om, )
¥ (y)sm, (v) u, (v
, *(a) u,(8)
u (Y)u Al

B (), (v)




uh(a) (B
(7-5) u*(&:b:.jylﬂ(l{)) =U,(G)F( *( ) (Y )+ u (B)[l—Fg(

u(a) o*(a) u,(p)
) +

w(y) u(y) o, (Y)

~ w(a) u,(p)
w, (V) Vp(— ), and
oY) (Y)

3 n*(a —u(a) u,(p)
(7.7) u'(a,b,3,28(v)) =u*(a)F; (——) +u"(8) )
woy po(v),u, (v)
w(e) u, ()
TREL S F

w*(y)su ()

where we recall that p*(a) = u*(a-1,b,3,8(v)), u*(g) = u"(a,0-1,3,8(v)),
G*(y) = u*(a,b,3-1,8(v)), and u,(a),u,(8), and u,(y) are defined
analogously. Hence (7.4) through (7.7) define a recursive formula

for u* and u, 1in terms of p¥-functions and u -functions of

lower order as well as F, UF’ and VF' The algorithm defined by

(7.4) through (7.7) merely requires a set of boundary conditions to

completely determine u" and u, for all possible arguments. The
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boundary conditions are (for arbitrary v)

(7.8) u*(a,b,0,v) =u,(a,b,0,y) =1 for any a,b,

(7.9) w (80,3,%) =nu"(e,3) for ad>l, i>1,

]

(7.10) u (a,0,3,v) g e 3] Tor &>1, 151,
« i ¥ o

{1:33) p,(0:0:Jsv) = v (b,3) for b2, J>1, and

1}

(7.32) - pMOb, i) = viihd) for B2l 531,

*

where u and v, represent the one-sided versions of this problem,

and where u, and v* are the values the '"non-players" in these

*

one-sided versions can expect by helplessly watching their opponents

carry out their strategy. Separate algorithms for evaluating these

four functions are given below.

Before generating the algorithms for u*, u,, v*, and vx, we
note that it is clear that u* depends only on Fl(pl) and Vv,
depends only F2(p2), but wu, and v depend on the entire joint

distribution of P, and P,. In preparation for dealing with the

R i 2

two marginal (univariate) c.d.f.'s, we define -for any univariate c.d.f.

A the transformation

(T:2%) TA(S) = rw(x-s)dA(x)[==?w(x-s)x(x)dx if A has a density i].
g ‘g

The properties of this transformation are detailed in section 11.8

of DeGroot [4]. Of course, since Pl and P2 are random variables

on [0,1], we can replace « by 1 in (7.13) when evaluating Tp
' 4
and TF . Suppose that X 1s a random variable with c.d.f. G,
2

that Y=DX for some constant D > O, and that H 1s the c.d.f.
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of Y. Then for any constant K, it is easily shown that

(7.14) E[max(K,X)] =K + TG(K),
(7.15) E[min(K,X)] = EX - TG(K), and
(7.16) Ty(s) = DTG(%).

Algorithms for u* and v, are now easlly obtained using

(7.14) through (7.16):

(7.17) u'(a,J) =E{max[u”(a-1,),Pju*(a,J-1)]1} =

“ " u‘(a-l,j)
u (a=1,J) +u (a,j-l)TF —_—
1u (axj'l)

(7.18) v,(b,3) = E{min[v,(b~1,5),P,v,(b,3-1)]1} =

V*(b'lxj)

V*(b,j—l) . EP2- V,(b,J-l)TFg(-——(TT-i—S- .
Ve Y b

The appropriate boundary conditions for (7.17) and (7.18), as well

¥
as for the funetions u, and v , are

(7.19) u (a,0) = u,(a,0) = v,(b,0) = v*(b,0) =1 for any a or

i

(7.20) u (0,J) = v (0,5)

]
[}

(EP:L)J for any j>1, and

i

(7.21) wu,(0,3) = v.(0,]) (EPQ):j for any j>1.

Algorithms for wu, and v’ are more difficult to obtain. To
compute u,(a,j), for example, we note from (7.17) that the prosecu
tion will challenge the next juror if and only if
Pl<:u'(a-1,J)/u’(a,J-1) = Q, say. Then
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\’ (7.22) u,(a,j) = EW, where

u,(a-1,j) if P, <Q
P.u,(a,j-1) if P, > Q.

Combining (7.22) and (7.23), we obtain

I

(7.?)4) u;(asj) 2% u,(a-l,j)Fl(Q)+u*(a,j-l)°'| E(Pg’Plzpl)dFl(pl)

Q

33
Opng(pzlpl)dFl(pl)

Il

u,(a-1,3)F; (Q) +u,(a,j-1)

il

u*(a-l,j)Fl(Q) +u*(a’j‘l)VF(Q’1)

since dF(p2|p1)- dFl(pl) = dF(pl,p2). By identical methods, one

can obtain
(7.25)  v*(b,3) = v (b-1,3)[1-F,o(R)] + v*(b,3-1)Up(O,R)

where R = v, (b=1,3)/v.(b,3-1). Equations (7.17), (7.18), (T7.24),
and (7.25), together with the boundary conditions (7.19) to (7.21),
form complete algorithms for evaluating the original boundary con-
ditions (7.9) to (7.12). The functions u° and p, can now be
computed for any arguments, and the optimal procedure is completely
specified for a>1l and b>1l. When a =0 and b>»1, the defense
is playing a one-sided game and we see from (7.18) that the optimal
strategy is to challenge the next Jjuror if and only if P2:>R.
Similarly, when b=0 and a>1l, we have already seen from (T.1T)

that the best strategy for the prosecution is to challenge if and
only if P1<:Q. When a=b=0, no strategy at all is involved. The
entire optimal strategy has now been specified.
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8. Examples That Are Not Universally Reversible

Example 1: It follows directly from Theorem 1 that reversibility
cannot hold (for any a,b,j at all) if Pl and P? are independent

(and neither is a constant).

Example 2: Since the problem is universally reversible if Ip:-kPl,

we might suspect that this is also the case when the distribution

of (P,,P,) lies on the union of two such straight lines, i.e.,

det g

PezzklP1 (denote this line Ll) or P2==k2P1 (denoted LQ). However,
we show that some T''s that are not universally reversible satisfy
this condition. Without loss of generality, assume O'ikl 1k?.

The three possible cases (depending on how kl and k2 compare

to 1) are illustrated below:

Case 1: kg <3 Case 2: kl Z e k2 Case 3: kl A
(1/kp,1) (1/kg,1) (1/kq,1)

Let T(kl,kg) be a subset of the unit square with the following
property: If (xl,yl)eLl n T(kl,kg) and (x,5,y,) € Ly N T(kl,kg),
then xy > X,. (Such a set can be found for any 0<ky <k, -- see
enclosed areas in the above diagrams.) Suppose the distribution
of (Pl,PQ) lies entirely on T(kl’kE) n (LllJLg). Suppose further-
more that very little of the probability lies on L2 (and hence
most of it lies on Ll)‘ Then for relatively close values of a

and b, it is clear that any juror whose (pl'pQ) lies on L, will
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be unsatisfactory to both sides. Lack of universal reversibility

follows from Theorem 1.

Comment: We cannot "fix" the above by requiring that the support

of the distribution of (Pl’Pe) be all of L, UL,. In that case, we
can construct essentially the same example by putting an exceedingly

negligible amount of the probability on (LlLJL?) N [T(kl,kﬂ‘]c.

1 =

Conjecture for an Example 3: If the distribution of (Pl’Pg) is

absolutely continuous with respect to Lebesque measure on the plane,

then the optimal strategy is not universally reversible.

9. Two Numerical Examples With the Same Marginal Distributions

7

Suppose P1 and P2 each have (marginal) uniform distributions
on [0,1] and that A=B=J=1 (i.e., one juror is to be selected and
each side has one challenge). We compute the relevant results in the

two cases where (i) P, =P, and (ii) P, and P, are independent.

Example 1: P1 =P, By either Theorem 2 or its corollary, we have

universal reversibility. By the proof of Theorem 2, M*==M* and
u' =u, for any possible common arguments. Furthermore, we can
write M‘(a,b,J,p,!) since Py and P, will always be the same.
Thus

(9.1) M*(1,1,1,p,1¢(v)) =M,(1,1,1,p,1¢(v)) =M (1,1,1,p,28(v)) =
M«(1,1,1,p,28(v)).

In the ensulng computations we make use of the following easily es-

tablished

Lemma: If P1==P2 with probability one and they have common mar-

ginal c.d.f. Fy, then
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0 if s>t
UF(s,t) = VF(s,t) = ft
Js wdko(w) if sa<t,

Back to our example, we use this lemma and the equations of sections

4 and 7 to obtain

({})'2) U’(l)lJoxg(z)) =1,
* u*(0,1)
(9.3) u*(1,0,1,8(y)) = u (1,1) = u*(0,1) + u*(1,0)T (—memem) =
1w {1,0)
1 1
5+ [ (x-3)ax = g,
%
* V*(Oyl)
(g'u) u (O,l,l,ﬂ(\i)) i V¥<151) = V*(Oxl)[l'Fg(_————)] =4
V*(l,O)
* 0 V*(Osl) = 1-F ) 1 i 3
v uqon%<,77375- = $[1-F, (% ]+UFML§)=n+IOvmw=§

-

and hence from (4.2) we obtain

38 IE P £ B
(9.5) M*(1,1,1,p,1¢{v)) ={p if 3/8 < p< 5/8
S/8 Af p > 5/0.

The equalities (9.1) can be verified by computations similar to the
above for the other M* and M, functions. It is easily found

from either (9.5) or (7.4) that
(906) u*(l,l,l,lf”(z)) =i[ =U*(1:13111¢(_Y_)) =“*(1,1:1:2¢(Y_)) o

H*(1:1:1s2¢(!) ) 1.

s
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Hence both sides start with expectation %. The optimal strategy
is as follows: The first candidate will be accepted if his p-value
is between % and ?; otherwise he will be challenged by the
appropriate party. If either side challenges the first juror,

his opponent will challenge the second Jjuror if and only if he
finds % preferable to this second p-value. If the defense uses
the first challenge, the expectation for both sides becomes %;

if the prosecution uses the first challenge, this common expecta-

tion is then 2. Of course, the mutual expectation returns to %

8
if both sides use their challenges.

Example 2: P and P2 are independent. By Class 1 of section 8,

1
there is no reversibility (so that we must compute four different

values of M or M and four different values of u" or T

*

It can be shown that (for 0<x<1l, 0<y<1)

(9:7)  Up(x,y) = % y(1-x°) and Vy(x,y) = ¢ y°(1-x).

~

Using (9.7) and the equations of sections 4 and 7, we obtain

v, (0,1)
(9'8) U*(Oil:lyg(!)) L V*(l)l) :V*(O,l)[l'Fd(———)} +
“ %,(1,0)
* V*(O,l)
+ v (l,O)UF(O,;Tz-l—’—-—))=%[l-F2(t)] +UF(O,é) =t,
* " * u*(oll)
(9'9) M (l,o:lyg(!)) i (1’1) =Uu (O:l)+U*(l:O)TF ("'"—_" =
1 u*(1,0)
b el
T (1) =3

(9.10) u"(1,1,0,8(¥)) =u,(1,1,0,8(v)) =1,




T
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vy(0,1)
(9.11) u,(0,1,1,8(v)) =v,(1,1) =4v,(1,0) - v,(1,0)Tg (————) =
2-v.[1.,0)
3-T. (3) =2, and
£ 8
u (0,1)
(9.12) 1, (1,0,1,8(v)) =u,(1,1) =u,(0,1)F, (—mm—=) +
i u (1,0)
‘ u*(0,1)
U,(l,O}\’F( % ’l) —‘?rl(%) +v}’(§)1) =t

These equations allow us to use section L4 to obtain the following

table for the optimal strategy (and the M* and M, values)

regarding the first prospective juror:

p,<% py>% pp<% P >%
p")(:.g % TEE p % 3 * * K
& Al -8- p2 *
,5_** 2** ¥
P, > % 8 8 - T g

M*(1,1,1,p,P5,18(¥)) M. (1,1,1,p1,P5,18(y))

(9.1%)
pp<% Py>% Pp<% P;>%
p,<#|% = |p _é_ wvex | pox
p>k| 4 o % *x % oox | g e

M*(1,1,1,py,p,,20(y)) M,(1,1,1,p;,pP,.28(v))

* = both accept, ** = defense challenges, *** = prosecution challenges

- p———— o~ -
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Note that each person can expect % if he uses his challenge since
his opponent's strategy 1s independent of his own perception of

the p-values. The optimal strategy beyond the first juror is the

same as in Example 1 since each side's strategy when his opponent

is out of challenges depends only on the appropriate marginal
distribution and not on the joint distribution of P, and Z,.
To see how much is gained by going first on the first juror,

we use (7.4) through (7.7) to compute

-

(9-14) w"(1,1,1,10(v)) = #F(§,4) +3[1-Fp(#) ] + Up(d,3) =2,
(9:15) w"(1,1,1,28(y)) = #F;(3) +2 Fd,4) +Up(d:4) = =§-31.2_,
(9:16) 1y(1,1,1,18(v)) = % F(3,4) + 3[1-Fo(#) ] + V(3. 3) 1—2 and
o2
2 3 oy ¢ W T
(9-17) u.(1,3,1,20(y)) = 2 Fo(3) +%F (4,8) + Vp($, %) ey

Thus each side can expect to do é% better by going first than by

going second.

o — AP L - — e i e ————————y i
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